Inleiding De leermap NIEUWE DELTA-T Complexe getallen is in hoofdzaak bestemd voor leerlingen uit de derde graad van de TSO-studierichtingen en de KSO-studierichtingen die leerplan b volgen. Opbouw van de leermappen Nieuwe Delta-T Elk hoofdstuk wordt ingeleid met een passende opening over het te bestuderen onderwerp. De genummerde paragrafen van elk hoofdstuk bestaan uit een aantal leeritems. Elk leeritem wordt ingeleid met een instapopdracht. hoofdstuk paragraaf leeritem instapopdracht leerinhoud Elk hoofdstuk begint met een inhoudstafel die aanwijst op welke pagina elk leeritem staat. In elk leeritem wordt de theorie compact uitgelegd en toegepast op concrete voorbeelden. De soort leerinhoud is herkenbaar aan de achtergrondkleur. Kennis en rekenregels om de opdrachten te kunnen uitvoeren. Doelgericht gebruik van de rekenmachines TEXAS INSTRUMENTS en CASIO. Vaardigheden om vlot te kunnen meten, schetsen en tekenen. Extra leerinhouden om uitbreidingsdoelstellingen te realiseren. 4 Inleiding Didactisch gerangschikte opdrachten zorgen voor een systematische verwerking van de leerinhouden. Instap Leeritems worden ingeleid met probleemstellingen uit de praktijk. De moeilijkheidsgraad van de opdrachten is aangegeven met gekleurde vierkantjes. Eenvoudige opdrachten Opdrachten met een bijkomende moeilijkheidsgraad Opdrachten met een hogere moeilijkheidsgraad Oefenopdrachten op de uitbreidingsleerstof worden aangegeven met een schaduwvlakje. Instap Instap Elke paragraaf wordt afgesloten met Uitdagingen. De Uitdagingen laten voldoende ruimte voor begeleid zelfstandig leren of zelfstandig leren en helpen de verschillen in studietempo opvangen. Uitdagingen Uitdagingen 1 11 In een klas scoorden de meisjes gemiddeld 8,5 en de jongens 7,4 op een toets wiskunde. In een een klas klas scoorden scoorden de de meisjes meisjes gemiddeld gemiddeld 8,5 8,5 en en de de jongens jongens 7,4 7,4 op op een een toets toets wiskunde. wiskunde. In Het gemiddelde van de klas is 8. Er zitten 12 meisjes in die klas. Het gemiddelde van de klas is 8. Er zitten 12 meisjes in die klas. Het gemiddelde van de klas is 8. Er zitten 12 meisjes in die klas. Hoeveel leerlingen telt deze klas? Hoeveel leerlingen leerlingen telt telt deze deze klas? klas? Hoeveel (A) 16 B (B) 18 (C) 20 (D) 22 (E) 24 (A) 16 B (B) 18 (C) 20 20 (D) 22 22 (E) 24 24 (A) 16 B (B) 18 (C) (D) (E) Vlaamse Wiskunde Olympiade Vlaamse Wiskunde Wiskunde Olympiade Olympiade Vlaamse In de Exploraties komen onderwerpen aan bod die binnen of buiten de wiskunde liggen. Exploratie Exploratie Kerncijfers Kerncijfers Kerncijfers De Algemene Directie Statistiek en Economische Informatie van de FOD Economie heeft de De Algemene Algemene Directie Directie Statistiek Statistiek en en Economische Economische Informatie Informatie van van de de FOD FOD Economie Economie heeft heeft de de De opdracht om aan de informatiebehoeften van de overheid, de bedrijfswereld en de burgers te opdracht om aan de informatiebehoeften van de overheid, de bedrijfswereld en de burgers te opdracht om aan de informatiebehoeften van de overheid, de bedrijfswereld en de burgers te voldoen door hen actuele cijfers over de toestand van het land aan te bieden. voldoen door door hen hen actuele actuele cijfers cijfers over over de de toestand toestand van van het het land land aan aan te te bieden. bieden. voldoen De brochure ‘Kerncijfers’ geeft een overzicht van wat er aan basisgegevens beschikbaar is. De brochure brochure ‘Kerncijfers’ ‘Kerncijfers’ geeft geeft een een overzicht overzicht van van wat wat er er aan aan basisgegevens basisgegevens beschikbaar beschikbaar is. is. De Het trefwoordenregister geeft aan op welke pagina we de nodige informatie kunnen terugvinden. Trefwoordenregister Trefwoordenregister A AA Absolute frequentie Absolute frequentie frequentie Absolute Absolute frequentiedichtheid Absolute frequentiedichtheid frequentiedichtheid Absolute Aselecte steekproef Aselecte steekproef Aselecte steekproef 5 Complexe getallen We hebben achtereenvolgens de verzameling van de natuurlijke getallen, de gehele getallen, de rationale getallen uitgebreid tot de verzameling van de reële getallen. In deze leermap bestuderen we de complexe getallen die een uitbreiding vormen van de reële getallen. De wiskundige Euler bedacht de notatie i voor de vierkantswortel uit -1. Met behulp van dit getal kunnen we de verzameling van de complexe getallen opbouwen waarmee het mogelijk wordt om allerlei natuurkundige problemen wiskundig op te lossen. De complexe getallen zijn van groot belang in verschillende wetenschapsgebieden waaronder de elektrotechniek. 6 1 Complexe getallen in de vorm a + bi Complex getal 8 Rekenen met complexe getallen 15 Tweedegraadsvergelijkingen29 Uitdagingen36 2 Complexe getallen in de goniometrische vorm Goniometrische vorm 37 Rekenen met complexe getallen 46 Binomiaalvergelijkingen68 Uitdagingen71 7 Paragraaf 1 1 Complexe getallen Complexe getallen in de vorm a + bi XX Complex getal 1 Instap Los de vergelijkingen op. a x+1=7 d x+4=3 x = 6 ...................................................................................................... e x 2 = 16 b 2x = 5 x = 5 2 ...................................................................................................... c x2 = 3 x = x = -1 ...................................................................................................... x = 4 of x = -4 ...................................................................................................... f x 2 = -1 3 of x = - 3 ...................................................................................................... geen oplossingen ...................................................................................................... en e 1 Welke vergelijkingen hebben een natuurlijk getal als oplossing? a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . en e 2 Welke vergelijkingen hebben een geheel getal als oplossing dat geen natuurlijk getal is? d . . . . . . . . . . . . . . . . . . b 3 Welke vergelijking heeft een rationaal getal als oplossing dat geen geheel getal is? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . c 4 Welke vergelijking heeft een reëel getal als oplossing dat geen rationaal getal is? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . f 5 Welke vergelijking heeft geen reëel getal als oplossing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Het getal i Tweedegraadsvergelijkingen hebben niet altijd reële getallen als oplossing, bijvoorbeeld: x 2 = -1. We kunnen geen reëel getal ontdekken waarvan het kwadraat gelijk is aan -1. Om de vergelijking x 2 = -1 te kunnen oplossen, breiden we de reële getallen uit met een nieuw soort getallen. Daarvoor voeren we een ‘denkbeeldig getal i ’ in waarvan het kwadraat gelijk is aan -1. Het getal i met kenmerk i 2 = -1 noemen we de imaginaire eenheid. Het getal i en zijn tegengestelde –i zijn oplossingen van de vergelijking x 2 = -1 omdat i 2 = -1 en (-i) 2 = i 2 = -1. 8 Complexe getallen in de vorm a + bi Paragraaf 1 Merk op Het getal i stelt een vierkantswortel van -1 voor. De notatie -1 mogen we niet gebruiken. Het rekenen met -1 leidt tot tegenstrijdigheden als de rekenregels voor vierkantswortels verkeerd worden toegepast: FOUT 1 = 1 = (-1) (-1) = -1 -1 = i ? i = i 2 = -1 Om dergelijke rekenfouten te vermijden, is de notatie -1 vervangen door het symbool i. In de elektriciteitsleer duiden we de imaginaire eenheid aan met de letter j omdat de letter i kan leiden tot verwarring met het symbool voor stroomsterkte. Voorbeelden Tweedegraadsvergelijkingen die geen reële oplossingen hebben, kunnen we nu oplossen. x 2 = -4 x 2 = 4 ? (-1) x 2 = 4i 2 i 2 = –1 x = 2i of x = -2i (2i)2 = 4 i 2 (–2i)2 = 4i 2 x 2 = -5 x 2 = 5 ? (-1) x 2 = 5i 2 i 2 = –1 x = 5iof x = - 5i ( 5i ) = 5 i (– 5i ) = 5i x = 2,24i afronden op 2 decimalen x = -2,24i 2 2 2 2 2 Zet een vinkje achter elke juiste uitspraak. 1 i 2 = -1 ✔ 4 i is de imaginaire eenheid 2 i = −1 5 i is een reëel getal 3 i2 = 1 6 i stelt een vierkantswortel van -1 voor ✔ ✔ 9 Paragraaf 1 Complexe getallen 3 Los op. Rond af op 2 decimalen. 1 x 2 = -16 2 x 2 = -3 x2 = 3 · (-1) ...................................................................................................... x2 = 16 · (-1) ...................................................................................................... ...................................................................................................... x2 = 16i2 ...................................................................................................... ...................................................................................................... x = 4i ...................................................................................................... ...................................................................................................... ...................................................................................................... of x = -4i 3 2x 2 = 14 x2 = 3i2 x = 3i of x = - 3i x = 1,73i x = -1,73i 4 (x + 3)(x - 3) = 11 x2 = 7 x2 - 9 = 11 ...................................................................................................... ...................................................................................................... ...................................................................................................... x = ...................................................................................................... ...................................................................................................... x = 2,65 ...................................................................................................... ...................................................................................................... ...................................................................................................... of 7 x = - 7 x = -2,65 5 x 2 + 25 = 0 x2 = 20 x = of 20 x = - 20 x = 4,47 x = -4,47 6 (x + 4)2 = 8x + 12 ...................................................................................................... x2 = - 25 ...................................................................................................... ...................................................................................................... x2 = 25 · (-1) ...................................................................................................... ...................................................................................................... x2 = 25i2 ...................................................................................................... ...................................................................................................... x = 5i ...................................................................................................... ...................................................................................................... ...................................................................................................... of x = -5i x2 + 8x + 16 = 8x + 12 x2 = -4 x2 = 4 · (-1) x2 = 4i2 x = 2i of x = -2i Complex getal Veelvouden van de imaginaire eenheid i noemen we imaginaire getallen, bijvoorbeeld 2i en 5i. Als we aan het imaginair getal 2i het reëel getal 3 toevoegen, dan verkrijgen we het samengestelde getal 3 + 2i. Een getal van de vorm a + bi met a en b reële getallen en i 2 = -1 , noemen we een complex getal. Het reëel getal a noemen we het reëel deel en het reëel getal b het imaginair deel van het complex getal a + bi. De verzameling van de complexe getallen duiden we aan met het symbool C. 10 We schrijven: 3 + 2i Œ C 3 + 2i is een complex getal -6 Œ C –6 = –6 + 0i is een complex getal 5i Œ C 5i = 0 + 5i is een complex getal Complexe getallen in de vorm a + bi Paragraaf 1 De verzameling C is een uitbreiding van de verzameling R omdat elk reëel getal een complex getal is waarvan het imaginair deel nul is. Gelijke complexe getallen Complexe getallen zijn gelijk als de reële delen en de imaginaire delen gelijk zijn: a + bi = c + di ¤ a = c en b = d a, b, c, d Œ R 4 Bepaal het reële deel en het imaginaire deel van elk complex getal. Vul de tabel in. complex getal 1 2 3 4 5 6 3 + 4i 2i -7 + 2i -4 -3 - 3i 3 -i 2 3 3 . . . . . . . . .0 .......... . . . . . . .-7-4-3 ............ ................... ................... ................... 2 reëel deel ................... imaginair deel ................... 4220 ................... ................... ................... . . . . . . -3 ............. . . . . . .-1 ............. 5 Bepaal de reële getallen a en b. 1 3 - 2i = a - bi 3 = a en 2 b = 3 + ai -2 = -b ...................................................................................................... b = 2 ...................................................................................................... ...................................................................................................... a = 3 ...................................................................................................... 3 a + 3i = 2 - bi a = 2 en 3 = -b b = -3 ...................................................................................................... 5 2a - bi = 4 + 3i 2a = 4 en -b = 3 b = -3 ...................................................................................................... 7 3a - 2i = 5 + 2bi 3a = 5 en 5 3 b = 3 0 = a en 2 = -b ...................................................................................................... a = 0 b = -2 ...................................................................................................... a + 3 = 4 en b - 2 = -3 ...................................................................................................... a = 1 b = -1 ...................................................................................................... 8 a = bi -2 = 2b ...................................................................................................... a = a = 0 0 = a 6 (a + 3) + (b - 2)i = 4 - 3i ...................................................................................................... a = 2 en 4 2i = a - bi ...................................................................................................... a = 2 b = 3 b = -1 ...................................................................................................... a = 0 en 0 = b ...................................................................................................... a = 0 b = 0 ...................................................................................................... 11 Paragraaf 1 Complexe getallen 9 -a - i = 2b - i 10 -i = a - bi ...................................................................................................... -1 = -1 0 ......= ......a . . . . . . . . . . . en . . . . . . . . . . . . . . -1 . . . . . . . . . .= . . . . . .-b ................................................. a = -2b b ∈ R a . . . . . .= . . . . . .0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .b . . . . . .= . . . . . .1 ................................................ -a = 2b en ...................................................................................................... 11 a + bi = a - bi a = a en 12 a + bi = -a - bi b = -b a . . . . . .= . . . . . . -a . . . . . . . . . . . . . . .en . . . . . . . . . . . . .b . . . . . .= . . . . . . -b .................................................. b = 0 a . . . . . .= . . . . . .0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .b . . . . . .= . . . . . .0 ................................................. ...................................................................................................... a ∈ R ...................................................................................................... 6 Vul in met het meest passende symbool N, Z, T, R of C. ............... 1 1,33... Œ . . .T ............... 6 1 + 2i Œ . . .C ............... 2 8 Œ . . .N 7 ................ 3 4i Œ . . C ................ 8 1,010010001... Œ . .R ............... 13 p Œ . . .R ............... 4 -5 Œ . . .Z 9 - 9 Œ ..Z ................ ............... 14 3,14 Œ . . .T 5 2 Œ . . .R ............... ................ 11 i Œ . . C 4 Œ . .T ................ 3 12 ............... 10 -1 - i Œ . . .C 6 Œ . . .N ............... 3 ............... 15 -6i Œ . . . C Complexe getallen voorstellen in het complexe vlak Een complex getal a + bi wordt volledig bepaald door de reële getallen a en b. Met elk complex getal a + bi komt een punt P(a, b) van het vlak overeen en omgekeerd: y b imaginaire as a + bi P(a, b) 1 0 1 a x reële as Het vlak waarin we de complexe getallen voorstellen met punten, noemen we het complexe vlak of het vlak van Gauss. De x-as noemen we de reële as en de y-as de imaginaire as. 12 Complexe getallen in de vorm a + bi Paragraaf 1 Voorbeeld We stellen de complexe getallen van de tabel voor in het complexe vlak. complexe getallen punten in het complexe vlak 3 + 4i (3, 4) -6 + 5i (-6, 5) -4 - 2i (-4, -2) 4 - 7i (4, -7) 6 (6, 0) i (0, 1) y -6 + 5i 3 + 4i 1 0 i 6 x 1 -4 - 2i 6=6+0?i i=0+1?i 4 - 7i Op de x-as vinden we alle reële getallen terug omdat een punt (a, 0) het reëel getal a voorstelt. Alle imaginaire getallen liggen op de y-as omdat een punt (0, b) het imaginair getal bi voorstelt. 7 Vul de tabel in en stel de getallen voor in het complexe vlak. complexe getallen punten complexe vlak 1 2 - 3i A(. . . . . .2. . . . . . . . . , . . . .-3 . . . . . . . . . . .) 2 -2 + 3i B(. . . .-2 . . . . . . . . . . . , . . . . . .3 . . . . . . . . .) 3 0 C(. . . . . .0. . . . . . . . . , . . . . . .0. . . . . . . . .) 4 -4i D(. . . . . 0 . . . . . . . . . . , . . . .-4 . . . . . . . . . . .) 5 5 E(. . . . . .5. . . . . . . . . , . . . . . .0 . . . . . . . . .) 6 4-i F(. . . . . .4. . . . . . . . . , . . . . -1 . . . . . . . . . . .) 7 -3 G(. . . .-3 . . . . . . . . . . . , . . . . . .0 . . . . . . . . .) 8 i H(. . . . . 0 . . . . . . . . . . , . . . . . .1 . . . . . . . . .) 9 5i + 1 I(. . . . . . 1 . . . . . . . . . , . . . . . . .5 . . . . . . . .) 10 -5 - 5i J(. . . . .-5 . . . . . . . . . . , . . . . .-5 . . . . . . . . . .) y I B G 1 H C 0 1 D E F x A J 13 Complexe getallen Paragraaf 1 Waar vinden we de reële getallen terug in het complexe vlak? Op de x-as of de reële as. ........................................................................................................................................................................................................................................ Waar vinden we de imaginaire getallen terug in het complexe vlak? Op de y-as of de imaginaire as. ........................................................................................................................................................................................................................................ 8 Bepaal de complexe getallen die door de punten worden voorgesteld. y F B I A 1 H 0 1 D x C J E G 14 punten in complexe vlak complexe getallen A(. . . . . .3. . . . . . . . . , . . . . . .2. . . . . . . . .) ............................................................ B(. . . . . .0. . . . . . . . . , . . . . . .5 . . . . . . . . .) ............................................................ C(. . . . . .2. . . . . . . . . , . . . .-2 . . . . . . . . . . .) ............................................................ D(. . . . . 4 . . . . . . . . . . , . . . . . .0 . . . . . . . . .) ............................................................ E(. . . .-5 . . . . . . . . . . . , . . . . -4 . . . . . . . . . . .) ............................................................ F(. . . .-3 . . . . . . . . . . . , . . . . . .5 . . . . . . . . .) ............................................................ G(. . . . . 0 . . . . . . . . . . , . . . .-5 . . . . . . . . . . .) ............................................................ H(. . . .-6 . . . . . . . . . . . , . . . . . .0 . . . . . . . . .) ............................................................ I(. . . . .-4 . . . . . . . . . . , . . . . . . .2 . . . . . . . .) ............................................................ J(. . . . . . 5 . . . . . . . . . , . . . . .-3 . . . . . . . . . .) ............................................................ 3 + 2i 5i 2 - 2i 4 -5 - 4i -3 + 5i -5i -6 -4 + 2i 5 - 3i Complexe getallen in de vorm a + bi Paragraaf 1 XX Rekenen met complexe getallen 9 Instap Bewerkingen met complexe getallen voeren we uit zoals bewerkingen met tweetermen waarbij we i 2 vervangen door -1. Bereken. 1 + 2i - 3 + 4i = -2 + 6i 1 (1 + 2i) + (-3 + 4i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 2i + 3 - 4i = 4 - 2i 2 (1 + 2i) - (-3 + 4i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 + 6i 3 3(1 + 2i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3i + 4i2 = -3i + 4 · (-1) = -3i - 4 = -4 - 3i 4 i (-3 + 4i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3 + 4i - 6i + 8i2 = -3 + 4i - 6i - 8 = -11 - 2i 5 (1 + 2i) ? (-3 + 4i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 4i + 4i2 = 1 + 4i + 4 · (-1) = 1 + 4i - 4 = -3 + 4i 6 (1 + 2i)2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complexe getallen optellen Om de som van twee complexe getallen te berekenen, tellen we de reële delen en de imaginaire delen op: (7 - 2i) + (2 + 3i) = (7 + 2) + (-2 + 3)i =9+i De voorstellingen van de getallen en hun som in het complexe vlak zijn drie hoekpunten van een parallellogram met de oorsprong als vierde hoekpunt. y 2 + 3i 9+i 1 0 x 1 7 - 2i 15 Paragraaf 1 Complexe getallen 10 Bereken. 1 (2 - 3i) + (4 + 3i) = . .6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .i ........................................... 6 (3 - 2i) + (4 + i) = . .7 . . . . . .. . . . . . 5i ........................................ 2 (-2 - i) + (3 - 4i) = . .1 . . . . . .+ . . . . . . 4i ...................................................... 7 5i + (2 - i) = . . . 2 . . . . . . . . . .. . . . . .7i .............................. 3 (-2 - 5i) + (-5 - 2i) = . . -7 . . . . . . .. . . . . .i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 + (3 - i) = . . . 6 . . . . . . . . . .. . . . . .i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 -3 + (2 - i) = . .-1 ........................................................................... 9 2i + 5i = . . . 7i .......................................................... 5 (1 + i) + i = . .1. . . . . .+. . . . . .2i ..................................................... 10 (2 - i) + (-2 + i) = . . .0 11 Teken de sommen in het complexe vlak en verbind de opeenvolgende punten. y 1 (2 + i) + (1 + 2i) 2 2 (1 + 2i) + (-1 + 2i) 3 1 -1 + 2i 3 (-1 + 2i) + (-2 + i) -2 + i 4 (-2 + i) + (-2 - i) 2+i 1 4 8 0 5 (-2 - i) + (-1 - 2i) x 1 -2 - i 6 (-1 - 2i) + (1 - 2i) 7 (1 - 2i) + (2 - i) 1 + 2i 2-i -1 - 2i 1 - 2i 7 5 8 (2 - i) + (2 + i) 6 Complexe getallen aftrekken Twee complexe getallen waarvan de som gelijk is aan nul, noemen we tegengestelde complexe getallen: (a + bi) + (-a - bi) = 0 16 We noteren: -(a + bi) = -a - bi We lezen: het tegengestelde van a + bi is -a - bi Complexe getallen in de vorm a + bi Paragraaf 1 De voorstellingen van a + bi en -a - bi liggen symmetrisch ten opzichte van de oorsprong. y a + bi b 1 -a 0 1 x a -b -a - bi Verschil van twee complexe getallen Om het verschil van twee complexe getallen te berekenen, tellen we het eerste complex getal en het tegengestelde van het tweede complex getal op: (8 + 5i) - (4 - 7i) = (8 + 5i) + (- 4 + 7i) tegengestelde van 4 – 7i = 4 + 12i complexe getallen optellen 12 Bepaal voor het complex getal zijn tegengestelde en stel beide getallen voor in het complexe vlak. complex getal tegengestelde complex getal 1 5 + 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 2 -5 + 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 3 5 - 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 4 -5 - 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 5 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 6 -5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . -5 - 3i y -5 + 3i 5 - 3i -5 + 3i 3i 5 + 3i 1 -5 0 1 5 x 5 + 3i -3i -5 - 3i -3i 5 - 3i 5 17 Paragraaf 1 Complexe getallen 13 Bereken. 5 + 3i - 7 - 2i = -2 + i 1 (5 + 3i) - (7 + 2i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 + 3i - 5 - 3i = 0 2 (5 + 3i) - (5 + 3i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 3i - 4 - 3i = -2 - 6i 3 (2 - 3i) - (4 + 3i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2 - 5i + 5 + 2i = 3 - 3i 4 (-2 - 5i) - (-5 - 2i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + i - 6 + i = 2i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 (6 + i) - (6 - i) = 6 1 + i - i = 1 6 (1 + i) - i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3 - 2 + i = -5 + i 7 -3 - (2 - i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5i - 2 + i = -2 + 6i 8 5i - (2 - i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3i 9 2i - 5i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1 - 4i + 2 + 4i = 1 10 (-1 - 4i) - (-2 - 4i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Teken de verschillen in het complexe vlak en verbind de opeenvolgende punten. 1(2 + i) - (1 + 2i) -1 + 2i y 4 1 + 2i 2(1 + 2i) - (-1 + 2i) 3(-1 + 2i) - (-2 + i) 4(-2 + i) - (-2 - i) -2 + i 5 6 0 -2 - i x 1 1 7 7(1 - 2i) - (2 - i) 8(2 - i) - (2 + i) 18 2+i 2 5(-2 - i) - (-1 - 2i) 6(-1 - 2i) - (1 - 2i) 3 1 -1 - 2i 8 1 - 2i 2-i Complexe getallen in de vorm a + bi Paragraaf 1 Complexe getallen vermenigvuldigen Het product van twee complexe getallen kunnen we berekenen zoals het product van twee tweetermen waarbij we i 2 vervangen door -1: (1 + 2i) ? (3 + 4i) = 3 + 4i + 6i + 8i 2 = 3 + 4i + 6i - 8 = -5 + 10i Machten van complexe getallen Machten van complexe getallen met een natuurlijke exponent kunnen we berekenen zoals machten van tweetermen. Voorbeelden (1 + 2i)2 = 1 + 4i + 4i 2 = 1 + 4i - 4 kwadraat van een tweeterm i 2 = –1 = -3 + 4i (1 + 2i)3 = (1 + 2i)2(1 + 2i) product van machten = (-3 + 4i)(1 + 2i) zie vorig voorbeeld: (1 + 2i)2 = –3 + 4i = -3 - 6i + 4i + 8i 2 distributieve eigenschap = -3 - 6i + 4i - 8 i2 = –1 = -11 - 2i i 4 = i 2 ? i 2 = (-1) ? (-1) product van machten i2 = –1 =1 15 Bereken. 6 + 2i - 12i - 4i2 = 6 + 2i - 12i + 4 = 10 - 10i 1 (2 - 4i) (3 + i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 6i + 5i - 6i2 = 5 - 6i + 5i + 6 = 11 - i 2 (1 + i) (5 - 6i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 + 21i + 2i + 6i2 = 7 + 21i + 2i - 6 = 1 + 23i 3 (-7 - 2i) (-1 - 3i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 + 4i - 10i - 2i2 = 20 + 4i - 10i + 2 = 22 - 6i 4 (-4 + 2i) (-5 - i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Paragraaf 1 Complexe getallen 2 . . . . . . . .+ . . . . . .4i . . . . . . . . .= . . . . . . 8i . . . . . . . .. . . . . .4 . . . . . .= . . . . . . -4 . . . . . . . . . .+ . . . . . .8i ................................................................................................................... 5 2i ? (4 + 2i) = . . .8i 28 - 28i 6 (4 - 4i) ? 7 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 (-5 - 6i) ? 2i = -10i - 12i2 = -10i + 12 = 12 - 10i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8i 8 -4i ? (-2) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -16i2 = 16 9 8i ? (-2i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9i + 9i2 = 9i - 9 = -9 + 9i 10 (-3 - 3i) ? (-3i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Bereken. 9 - 4i2 = 9 + 4 = 13 1 (3 - 2i)(3 + 2i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 + 6i + i2 = 9 + 6i - 1 = 8 + 6i 2 (3 + i)2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 (3 - 7i)(-3 - 7i) = 49i2 - 9 = -49 - 9 = -58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 12i + 9i2 = 4 - 12i - 9 = -5 - 12i 4 (2 - 3i)2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 49i2 = 4 + 49 = 53 5 (2 – 7i)(2 + 7i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 ( 2 -i )( ) 2 +i = 2 - i2 = 2 + 1 = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 2i + i2 = 1 + 2i - 1 = 2i 7 (1 + i)2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1 + i)2 (1 + i) = (1 + 2i + i2) (1 + i) = (1 + 2i -1) (1 + i) 8 (1 + i)3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 2i(1 + i) = 2i + 2i2 = 2i - 2 = -2 + 2i ............................................................................................................................................................................................................................. (2 - 4i)2 (2 - 4i) = (4 - 16i + 16i2) (2 - 4i) 9 (2 – 4i)3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = (4 - 16i - 16) (2 - 4i) = (-12 - 16i) (2 - 4i) = -24 + 48i - 32i + 64i2 ............................................................................................................................................................................................................................. = . . . . . . .-24 . . . . . . . . . . . . .+ . . . . . .48i . . . . . . . . . . .. . . . . . 32i . . . . . . . . . . .. . . . . . 64 . . . . . . . . . .= . . . . . . -88 . . . . . . . . . . . . .+ . . . . . . 16i .............................................................................................................................. (2 - i)2 (2 - i)2 = (4 - 4i + i2) (4 - 4i + i2) 10 (2 – i)4 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = (4 - 4i -1) (4 - 4i - 1) = (3 - 4i) (3 - 4i) = 9 - 12i - 12i + 16i2 ............................................................................................................................................................................................................................. = 9 - 24i - 16 = -7 - 24i ............................................................................................................................................................................................................................. 20 Complexe getallen in de vorm a + bi Paragraaf 1 17 Bereken de machten van de imaginaire eenheid. i 1 i 1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i4 · i2 = 1 · (-1) = -1 6 i 6 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1 2 i 2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i4 · i3 = 1 · (-i) = -i 7 i 7 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i2 · i = (-1) · i = -i 3 i 3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (i2)6 = (-1)6 = 1 8 i 12 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i2 · i2 = (-1) · (-1) = 1 4 i 4 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i24 · i = (i2)12 · i = (-1)12 · i = i 9 i 25 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i4 · i = 1 · i = i 5 i 5 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (i2)111 = (-1)111 = -1 10 i 222 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Toegevoegde complexe getallen Twee complexe getallen met gelijke reële delen en tegengestelde imaginaire delen, noemen we toegevoegde complexe getallen. We noteren: a + bi = a - bi We lezen: het toegevoegde complex getal van a + bi is a - bi De voorstellingen van a + bi en a - bi liggen symmetrisch ten opzichte van de x-as. y a + bi b 1 0 a 1 -b x a - bi Voorbeelden 5 + 2i = 5 - 2i i = -i i=0+1?i 3 = 3 3=3+0?i Product van toegevoegde complexe getallen Het product van twee toegevoegde complexe getallen is een reëel getal: (5 + 2i) ? (5 - 2i) = 25 - 4i 2 (a + b)(a – b) = a2 – b2 = 25 + 4 = 29 21 Paragraaf 1 Complexe getallen 18 Bepaal voor het complex getal zijn toegevoegde en stel beide getallen voor in het complexe vlak. complex getal toegevoegde complex getal 1 5 + 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 2 -5 + 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 3 5 - 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 4 -5 - 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 5 3i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 6 -5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . 5 - 3i y -5 + 3i -5 - 3i 3i 5 + 3i 1 5 + 3i -5 0 x 1 -5 + 3i -3i -5 - 3i -3i 5 - 3i -5 19 Bereken het product van de toegevoegde complexe getallen. (1 + 2i) (1 - 2i) = 1 - 4i2 = 1 + 4 = 5 1 (1 + 2i) (1 + 2i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5 - 7i) (5 + 7i) = 25 - 49i2 = 25 + 49 = 74 2 (5 - 7i) (5 - 7i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-3 + 4i) (-3 - 4i) = 9 - 16i2 = 9 + 16 = 25 3 (-3 + 4i) (-3 + 4i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (-4 - 6i) (-4 + 6i) = 16 - 36i2 = 16 + 36 = 52 4 (- 4 - 6i) (- 4 - 6i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5i · (-5i) = -25i2 = 25 5 5i ? 5i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1 + i) (1 - i) = 1 - i2 = 1 + 1 = 2 6 (1 + i) (1 + i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 · 3 = 9 7 3 ? 3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i · (-i) = -i2 = -(-1) = 1 8 i ? i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Toon aan dat de som en het product van twee toegevoegde complexe getallen reële getallen zijn. (a + bi) + (a - bi) = a + bi + a - bi = 2a ∈ R (a + bi) + (a + bi) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (a + bi) (a - bi) = a2 - b2i2 = a2 + b2 ∈ R (a + bi)(a + bi) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Complexe getallen in de vorm a + bi Paragraaf 1 Complexe getallen delen Om het quotiënt van twee complexe getallen te berekenen, vermenigvuldigen we deeltal en deler met het toegevoegde complex getal van de deler. Zo verkrijgen we een reëel getal als deler. - 5 + 5 i (- 5 + 5i )(1 - 2i ) = 1 + 2i (1 + 2i )(1 - 2i ) toegevoegde complex getal van 1 + 2i is 1 – 2i = - 5 + 10i + 5i - 10i 2 1 - 4i 2 distributieve eigenschap product van toegevoegde tweetermen = - 5 + 10i + 5i + 10 1+ 4 i 2 = –1 = 5 + 15i 5 = 1 + 3i Merk op Het omgekeerde complex getal van a + bi noteren we als (a + bi)-1 : (a + bi)-1 = 1 a + bi 21 Bereken. 1 1 1 · (-i) -i = -i = -i2 = = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 i · (-i) -i i 2 2 (-3 - 2i) (-5i) −3 - 2i = 15i - 10 = - 10 + 15 i = - 2 + 3 i = 15i + 10i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 25 5 25 25 5 5i · (-5i) 5i -25i 3 (4 - 7i) (-6i) 4 - 7i -24i + 42i2 -24i - 42 = - 42 - 24 i = - 7 - 2 i = .........................................= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= ........................................................................................................................ 36 6i · (-6i) 36 36 6 3 6i -36i2 4 1 · (1 - i) 1 1 - i 1 - i = 1 - i2 = = = 1 - 1 i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 1 2 (1 + i) (1 - i) 1 - i 2 1+i 2 5 i · (3 + 2i) i 2 . . . . . . . .3 + 3i . . . . . .- + 2i2 . . . . . . 3i - 2 . . . . . .-2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .=. . . . . .3i . . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . .+ . . . . . i ................................. 2 13 13 (3 - 2i) (3 + 2i) 13 9 + 4 3 - 2i 9 - 4i 6 (8 + i) (4 - i) 8+i - i2 = 32 - 8i + 4i + 1 = 33 - 4i = 32 - 8i + 4i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 + 1 (4 + i) (4 - i) 17 4+i 16 - i2 = 33 - 4 i 17 17 ............................................................................................................................................................................................................................. 23 Paragraaf 1 7 Complexe getallen 2 -2 + 3i (-2 + 3i) (1 + 2i) -2 - 4i + 3i - 6 = -2 - 4i + 3i2 + 6i = = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 4 (1 - 2i) (1 + 2i) 1 - 2i 1 - 4i = -8 - i = - 8 - 1 i 5 5 5 ............................................................................................................................................................................................................................. 8 2 (1 + i) (3 + i) 1+i = 3 + i + 3i2 + i = 3 + i + 3i - 1 = 2 + 4i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3 - i) (3 + i) 9 + 1 10 3-i 9 - i = 2 + 4 i = 1 + 2 i 5 5 10 10 ............................................................................................................................................................................................................................. 9 2 5-i (5 - i) (1 - i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 5 - 5i - 2i + i = 5 - 5i - i - 1 = 4 - 6i = 2 - 3i 1 + 1 (1 + i) (1 - i) 2 1+i 1- i ............................................................................................................................................................................................................................. 10 2 1 - 2i (1 - 2i) (2 - 3i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 2 - 3i - 4i2+ 6i = 2 - 3i - 4i - 6 = -4 - 7i 13 4 + 9 (2 + 3i) (2 - 3i) 2 + 3i 4 - 9i = - 4 - 7 i 13 13 ............................................................................................................................................................................................................................. 22 Bereken. 1 53(2 + i) (7 - 2i )(7 + 2i ) + 4 106 + 53i 53 - 4i2 . . . . . .49 = . . . . .49 . . . . . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= ...................................................... 2 (2 i) (2 + i) 2 - i 2 - i 2-i 4 - i 2 - i + 53i 106 + 53 i 106 + 53i . . . . . . 106 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= ..................................................................................................................................................... 5 5 4 + 1 5 2 (-3 - i )2 9 + 6i + i2 = 9 + 6i - 1 = 8 + 6i = (8 + 6i) (-3 - i) = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3 + i -3 + i (-3 + i) (-3 - i) -3 + i -3 + i 2 - 26i - 8i - 18i + 6 . . . . . . -18 -24 - 8i - 18i - 6i . . . . . .-24 9 . . . . . .13 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= . . . . . .- . . . . . . . . . . .. . . . . . . i ............................. 2 10 9 + 1 5 5 9 - i 3 5(-1 + 2i) (1 + 2i )(3 + 4 i ) 3 + 4i + 6i + 8i2 = 3 + 4i + 6i - 8 = -5 + 10i = = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5 + 10i 5(1 + 2i) 8 + 4i + 6i - 3 8 + 4i + 6i + 3i ( 4 + 3i )(2 + i ) = (-1 + 2i) (1 - 2i) -1 + 2i + 2i - 4i2 -1 + 2i + 2i + 4 = = = 3 + 4i = 3 + 4 i 2 5 1 + 4 (1 + 2i) (1 - 2i) 5 5 1 - 4i ............................................................................................................................................................................................................................. 4 (1 + 2i)2 (1 - 2i)2 (1 - 2i)2 + (1 + 2i)2 1 - 2i 1 + 2i + = = + (1 + 2i) (1 - 2i) (1 - 2i) (1 + 2i) (1 - 2i) (1 + 2i) 1 + 2i 1 - 2i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 1 - 4i + 4i + 1 + 4i + 4i 1 - 4i - 4 + 1 + 4i - 4 . . . . . . -6 6 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .= . . . . . . . . . .= . . . . . .- ........................................... 2 5 1 + 4 5 1 - 4i 24 Complexe getallen in de vorm a + bi Paragraaf 1 1 1 1 1 1 1 = = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 2 2 1 + 2i - 1 1 - 2i - 1 1 - 2i + i 1 + 2i + i (1 - i ) (1 + i ) 5 -1 · (-i) -2 = -1 = = i2 = i = i = 1 - 1 = - 1 - 1 = i · (-i) 2i -2i 2i 2i 2i i 1 -i ............................................................................................................................................................................................................................. 23 Gegeven zijn de complexe getallen: c1 = -2 + 3i c2 = 1 + i c3 = -2i c4 = -1 Bereken. 2 (-2 + 3i) (1 - i) - 3i (-2 + 3i) (1 + i)-1­ = -2 + 3i = = -2 + 2i + 3i 1 c1 ? c2-1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (1 + i) (1 - i) 1 + i 1 - i2 = -2 + 2i + 3i + 3 = 1 + 5i = 1 + 5 i 1+ 1 2 2 2 ................................................................................................................................................................................................................................. (-2i)2 - (-2 + 3i) (-1) + (1 + i)2 = 4i2 - 2 + 3i + 1 + 2i + i2 2 c32 - c1 ? c4 + c22 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = -4 - 2 + 3i + 1 + 2i - 1 = -6 + 5i ................................................................................................................................................................................................................................. (-2 + 3i + 1 + i - 2i - 1)2 = (-2 + 2i)2 = 4 - 8i + 4i2 3 (c1 + c2 + c3 + c4)2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 4 - 8i - 4 = -8i ................................................................................................................................................................................................................................. (-2 + 3i - 2i) ((1 + i) (-2i)) = (-2 + i) (-2i - 2i2)-1 4 (c1 + c3) ? (c2 ? c3)–1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1 2 (-2 + i) (2 + 2i) = -4 - 4i + 2i2 + 2i = (-2 + i) (-2i + 2)-1 = -2 + i = 2 - 2i (2 - 2i) (2 + 2i) 4 - 4i ................................................................................................................................................................................................................................. = -4 - 4i + 2i - 2 -6 - 2i = = - 6 - 2 i = - 3 - 1 i 8 4 +4 4 8 4 8 ................................................................................................................................................................................................................................. -2 + 3i - 2 (-2 + 3i) (1 + i) - 2i 5 c1 - 2c1 ? c2 + c3 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = -2 + 3i - 2 (-2 - 2i + 3i + 3i2) - 2i = -2 + 3i - 2 (-5 + i) - 2i ................................................................................................................................................................................................................................. = -2 + 3i - 2 (-5 -i) - 2i = -2 + 3i + 10 + 2i - 2i = 8 + 3i ................................................................................................................................................................................................................................. 25 Paragraaf 1 Complexe getallen Vierkantswortels van een negatief reëel getal We weten dat een reëel getal kleiner dan nul geen reële vierkantswortel heeft: x 2 = - 49 fi x œ R We zeggen dat –49 geen vierkantswortels in R heeft. Rekenen we met complexe getallen, dan kunnen we - 49 schrijven als: - 49 = 49 ? (-1) = 49i 2 Er zijn twee complexe getallen waarvan het kwadraat gelijk is aan - 49: (7i)2 = 49i 2 = - 49 en (-7i)2 = 49i 2 = - 49 De tegengestelde getallen 7i en -7i noemen we de vierkantswortels in C van - 49. Merk op Het wortelteken gebruiken we uitsluitend voor de positieve vierkantswortel van een positief reëel getal. Er bestaat geen symbool voor een vierkantswortel van een negatief reëel getal. 49 = 7 –49 = 7i 24 Bepaal de vierkantswortels in R en in C van het reëel getal. reëel getal 1 2 3 4 25 -25 0 -1 vierkantswortels in R .............................. 5 en -5 .............................. / .............................. 0 .............................. vierkantswortels in C .............................. 5 en -5 .............................. 5i en -5i .............................. 0 .............................. 25 Vink elke juiste notatie aan. 1 64 = 8 2 -64 = 8i 3 - 64 = -8 26 ✔ ✔ 4 3 -64 = - 4 5 -1 = i 6 1=1 ✔ ✔ / i en -i Complexe getallen in de vorm a + bi Paragraaf 1 Rekenen met complexe getallen We berekenen een vierkantswortel van –49, i 2 en –5+5i . 1+2i TEXAS INSTRUMENTS We zetten de rekenmachine in de mode a+bi. [ MODE ] [ ▼: 6-maal = REAL ] [ = a+bi ] [ ENTER ] ▼ ■ Met de toets kunnen we een vierkantswortel in C berekenen van - 49. De machinenotatie - 49 gebruiken we niet in de wiskunde. Om complexe getallen in te voeren, gebruiken we de toets i. [ 2ND ] [ ] –49 [ ENTER ] ■ [ 2ND ] i [ x2 ] [ ENTER ] ■ [ ( ] –5 + 5i [ ) ] [ ] [ ( ] 1 + 2i [ ) ] [ENTER ] ■ CASIO We zetten de rekenmachine in de mode a+bi. ■ [ MENU ] [ 1: RUN ] [ SHIFT ] [ SET UP ] [ ▼: 7-maal = Real ] [ F2 = a+bi ] [ EXIT ] Met de toets kunnen we een vierkantswortel in C berekenen van - 49. De machinenotatie - 49 gebruiken we niet in de wiskunde. Om complexe getallen in te voeren, gebruiken we de toets i. [ SHIFT ] [ ] –49 [ EXE ] ■ [ SHIFT ] i [ x2 ] [ EXE ] ■ [ ( ] –5 + 5i [ ) ] [ ] [ ( ] 1 + 2i [ ) ] [ EXE ] ■ 27 Paragraaf 1 Complexe getallen 26 Bereken met ICT de vierkantswortels in C. Rond het reële deel en het imaginaire deel af op 3 decimalen. 2,449i en -2,449i 1,732i en -1,732i 3,162 en -3,162 0,632i en -0,632i 1,581i en 1 Vierkantswortels van -6: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Vierkantswortels van -3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Vierkantswortels van 10: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Vierkantswortels van -0,4: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Vierkantswortels van -2,5: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -1,581i 27 Bereken met ICT. Rond het reële deel en het imaginaire deel af op 3 decimalen. 1 (6 - i )(6 + i ) 18,5 + 18,5i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-i 4 (2 + 3i )( 4 + 5i ) 0,816 + 0,578i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (5 + 4 i )(3 + 2i ) 2 (−4 - i )2 -3,059 - 2,765i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -4 + i 5 1 - 3i 1 + 3i + -1,6 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 + 3i 1 - 3i 1,9 - 1,3i 3 (7 - 2i)(3 + i)-1 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 1 0,008i = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 (8 - i ) (8 + i )2 28 Controleer met ICT de rekenresultaten van opdracht 23. Rond het reële deel en het imaginaire deel af op 3 decimalen. 29 Nisse en Fiene rekenen uit dat 2 + 3i 3 1 = - i. Ze controleren hun berekeningen met een 4i 4 2 TI-rekenmachine. Het rekenscherm ziet er als volgt uit: Waar zit de fout? De noemer 4i moet tussen haakjes staan: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2 + 3i) / (4i) = 0,75 - 0,5i ........................................................................................................................................................................................................................................ 28 Complexe getallen in de vorm a + bi Paragraaf 1 XX Tweedegraadsvergelijkingen 30 Instap Gegeven is de tweedegraadsvergelijking x 2 - 6x + 10 = 0. D = (-6)2 - 4 · 1 · 10 = 36 - 40 = -4 1 Bereken de discriminant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Geen. 2 Hoeveel reële oplossingen heeft de tweedegraadsvergelijking? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Toon aan met een berekening dat 3 + i en 3 - i oplossingen in C zijn van de tweedegraadsvergelijking. (3 + i)2 - 6(3 + i) + 10 = 9 + 6i + i2 - 18 - 6i + 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 9 + 6i - 1 - 18 - 6i + 10 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3 - i)2 - 6(3 - i) + 10 = 9 - 6i + i2 - 18 + 6i + 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = 9 - 6i - 1 - 18 + 6i + 10 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tweedegraadsvergelijkingen met reële coëfficiënten Een tweedegraadsvergelijking ax 2 + bx + c = 0 met reële coëfficiënten heeft slechts reële oplossingen als D = b 2 - 4ac ≥ 0. Als we rekenen met complexe getallen, dan is de vierkantsworteltrekking van een negatief reëel getal mogelijk en heeft een tweedegraadsvergelijking altijd oplossingen: ax 2 + bx + c = 0 a, b, c Œ R en a ≠ 0 ax 2 + bx = -c beide leden vermeerderen met –c 4a 2x 2 + 4abx = - 4ac beide leden vermenigvuldigen met 4a 4a 2x 2 + 4abx + b 2 = - 4ac + b 2 beide leden vermeerderen met b2 (2ax + b)2 = D volkomen kwadraat ontbinden b2 – 4ac = D 2ax + b = w of 2ax + b = -w 2ax = - b + w 2ax = - b - w x= -b + w 2a x = -b - w 2a w en –w zijn vierkantswortels in C van D beide leden vermeerderen met –b beide leden vermenigvuldigen met 1 2a 29 Paragraaf 1 Complexe getallen Wortelformule in C De wortels van een tweedegraadsvergelijking ax 2 + bx + c = 0 met reële coëfficiënten berekenen we in C met de formules: x1 = –b + w –b – w x2 = 2a 2a w en –w zijn vierkantswortels in C van D = b2 – 4ac Als D > 0, dan is w = D en zijn er twee verschillende reële wortels x1 en x2. b Als D = 0, dan is er één reële wortel x = - . 2a Als D < 0, dan zijn er twee verschillende complexe wortels x1 en x2. Voorbeelden Als we tweedegraadsvergelijkingen oplossen met de wortelformule, berekenen we eerst de discriminant. x 2 - 6x + 10 = 0 a = 1 b = –6 c = 10 D = (- 6) 2 - 4 ? 1 ? 10 = 36 - 40 = - 4 < 0 w = 2i -(-6) + 2i 6 + 2i = 2 1 2 -(-6) + 2i 6 + 2i == =3+i 2 1 2 6 - 2i =3-i x2 = 2 x1 = x 2 - 3x + 6 = 0 D = b2 – 4ac < 0 w is een vierkantswortel van –4 x1 = –b + w 2a x2 = –b – w 2a a = 1 b = –3 c = 6 D = (-3) 2 - 4 ? 1 ? 6 = 9 - 24 = -15 < 0 w = 15i -(-3) + 15i 3 + 15i = = 1, 5 + 1,94i 2 1 2 -(-3) + 15i 3 + 15i = = 1, 5 + 1,94i 2 1 2 3 - 15i x2 = = 1, 5 - 1,94i 2 x1 = D = b2 – 4ac < 0 w is een vierkantswortel van –15 x1 = –b + w 2a afronden op 2 decimalen x2 = –b – w 2a Merk op Als D < 0, dan zijn de twee wortels toegevoegde complexe getallen. 30 Complexe getallen in de vorm a + bi Paragraaf 1 31 Los op in C met de wortelformule. 1 x 2 - 4x + 5 = 0 2 x 2 - 4x + 13 = 0 16 - 20 = -4 D = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................... 2i w = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................... x1 = 4 + 2i = 2 + i 2 D = 16 - 52 = -36 w = 6i x1 = 4 + 6i = 2 + 3i 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................... 2 - i x2 = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................... 3 x 2 - 36x + 324 = 0 D = (-36)2 - 4 · 1 · 324 = 0 x2 = 2 - 3i 4 17x 2 - 2x + 1 = 0 D = 4 - 68 = -64 .................................................................................................... .................................................................................................... .................................................................................................... x = - -36 = 18 2 .................................................................................................... .................................................................................................... .................................................................................................... .................................................................................................... .................................................................................................... 5 -2x 2 + 2x - 1 = 0 w = 8i x1 = 2 + 8i = 1 + 4 i 34 17 17 x2 = 1 - 4 i 17 17 6 2x 2 + 5x + 2 = 0 .................................................................................................... D = 4 - 8 = -4 .................................................................................................... .................................................................................................... w = 2i .................................................................................................... .................................................................................................... x1 = -2 + 2i = 1 - 1 i -4 2 2 .................................................................................................... x2 = 1 + 1 i 2 2 .................................................................................................... .................................................................................................... 7 2x 2 + 5x + 6 = 0 D = 25 - 48 = -23 .................................................................................................... w = 23i .................................................................................................... x1 = -5 + 23i = -1,25 + 1,20i 4 .................................................................................................... x2 = -1,25 - 1,20i .................................................................................................... D = 25 - 16 = 9 w = 3 x1 = -5 + 3 = -2 = - 1 4 4 2 x2 = -5 - 3 = -8 = -2 4 4 8 x2 - x + 1 = 0 D = 1 - 4 = -3 .................................................................................................... w = 3i .................................................................................................... x1 = 1 + 3i = 0,5 + 0,87i 2 .................................................................................................... x2 = 0,5 - 0,87i .................................................................................................... 31 Paragraaf 1 Complexe getallen 9 4x 2 - 3x + 3 = 0 10 x 2 + 7x + 12,5 = 0 D = 9 - 48 = -39 .................................................................................................... 39i D . . . . . . .= . . . . . . 49 . . . . . . . . . .. . . . . .50 . . . . . . . . . .= . . . . . .-1 ....................................................... .................................................................................................... w . . . . . . .= . . . . . .i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 + 39i = 0,38 + 0,78i x . . . . . . . . .= 1 ........................................................................................... 8 -7 + i = - 7 + 1 i x . . . . . . . . .= 1 ........................................................................................... 2 2 2 w = 0,38 - 0,78i x . . . . . . . . .= 2 ........................................................................................... x2 = - 7 - 1 i 2 2 .................................................................................................... 32 Los op in C met de meest geschikte methode. 1 1 x 2 + 18 = 0 2 x2 + 36 = 0 ·2 3x2 = -7 .................................................................................................... .................................................................................................... 2 x . . . . . . . . .= . . . . . .-36 ..................................................................................... .................................................................................................... .................................................................................................... x = 6i .................................................................................................... .................................................................................................... .................................................................................................... of x = -6i 3 x(x - 3) = x(3x - 2) 7 x2 = - 3 x = 7 i 3 of x = 1,53i x = - 7 i 3 x = -1,53i 4 (x - 1)(x - 2) = -5 .................................................................................................... x2 - 3x = 3x2 - 2x .................................................................................................... 2 -2x . . . . . . . . . . . . . . . .. . . . . .x . . . . . .= . . . . . .0 .................................................................. .................................................................................................... .................................................................................................... 2x2 + x = 0 .................................................................................................... x(2x . . . . . . . . . . . . . . . .+ . . . . . .1) . . . . . . . .= . . . . . .0 ................................................................ .................................................................................................... x ......= . . . . . . .0 . . . . . . . . . . . . . of . . . . . . . . . . . . . . . . .2x . . . . . . . . .+ . . . . . .1 . . . . . .= . . . . . .0 .............................. .................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2x . . . . . . . . .= . . . . . . -1 .......................................... .................................................................................................... 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .x. . . . . .=. . . . . .- ............................................. 2 32 2 3x 2 + 7 = 0 x2 - 2x - x + 2 = -5 x2 - 3x + 7 = 0 D = 9 - 28 = -19 w = 19 i x1 = 3 + 2 19i = 1,5 + 2,18i x2 = 1,5 - 2,18i .................................................................................................... Complexe getallen in de vorm a + bi 2 1 4 5 - x2 - x - = 0 3 2 3 2 .4x . . . . . . . . . . .+ . . . . . . 3x . . . . . . . . . .+ . . . . . .8 . . . . . .= . . . . . .0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ·(-6) ....................... Paragraaf 1 6 (x - 3) (x + 3) - 5(x - 2)2 = 0 x2 - 9 - 5(x2 - 4x + 4) = 0 .................................................................................................... x2 - 9 - 5x2 + 20x - 20 = 0 D . . . . . . .= . . . . . .9 . . . . . .......4 ......· . . . . . . .4 . . . . . .· . . . . . .8 . . . . . .= . . . . . .-119 ...................................... .................................................................................................... w . . . . . . .= . . . . . . . . . .119 i ................................................................................... .................................................................................................... x1 = -3 + 119i 8 .................................................................................................... = -0,38 + 1,36i .................................................................................................... x2 = -0,38 - 1,36i -4x2 + 20x - 29 = 0 4x2 - 20x + 29 = 0 .................................................................................................... D = (-20)2 - 4 · 4 · 29 = -64 .................................................................................................... w = 8i .................................................................................................... .................................................................................................... .................................................................................................... .................................................................................................... .................................................................................................... .................................................................................................... x1 = 20 + 8i = 5 + i 2 8 x2 = 5 - i 2 Tweedegraadsvergelijkingen oplossen in C We berekenen de oplossingen in C van de tweedegraadsvergelijking x2 – 6x + 10 = 0. TEXAS INSTRUMENTS Met de toepassingentoets APPS kunnen we de toepassing PolySmlt 2 oproepen. In het MAIN MENU kiezen we de optie POLY ROOT FINDER. ■ [ APPS ] [ 4: PlySmlt2 ] [ ENTER ] [ 1: POLYNOMIAL ROOT FINDER ] We voeren de graad 2 van de vergelijking in en kiezen voor het oplossen van de vergelijking in C (a+bi). We drukken de toets F5 (NEXT) en voeren de coëfficiënten in. ■ [ F5: NEXT ] 1 [ ENTER ] –6 [ ENTER ] 10 33 Paragraaf 1 Complexe getallen We drukken de toets F5 (SOLVE) om de vergelijking op te lossen. ■ [ F5: SOLVE ] De oplossingen in C van de vergelijking zijn 3 + i en 3 - i. CASIO In het menu EQUA kiezen we voor het submenu Polynomial. ■ [ MENU ] [ A: EQUA ] [ F2: POLY ] We voeren de graad 2 van de vergelijking in. Daarna voeren we de coëfficiënten in. We kiezen voor het oplossen van de vergelijking in C (Complex Mode: a+bi). ■ [ F1: 2 ] 1 [ EXE ] –6 [ EXE ] 10 [ EXE ] [ SHIFT ] [ SET UP ] [▼: 4-maal ] [ F2: a+bi ] [ EXIT ] We drukken de toets F1 (SOLV) om de vergelijking op te lossen. ■ [ F1: SOLV ] De oplossingen in C van de vergelijking zijn 3 + i en 3 - i. 33 Controleer met ICT de rekenresultaten van opdracht 31. 34 Complexe getallen in de vorm a + bi Paragraaf 1 Drietermen van de tweede graad met reële coëfficiënten ontbinden in C Als x1 en x2 de wortels in C zijn van de tweedegraadsvergelijking ax 2 + bx + c = 0 met reële coëfficiënten, dan is: ax2 + bx + c = a(x – x1)(x – x2) Omdat elke tweedegraadsvergelijking in C twee verschillende of twee gelijke wortels heeft, kunnen we elke drieterm van de tweede graad in C ontbinden in twee verschillende of twee gelijke factoren van de eerste graad. Voorbeeld We ontbinden x 2 - 6x + 10 in factoren. x 2 - 6x + 10 x2 – 6x + 10 = 0 x1 = 3 + i x2 = 3 – i = 1(x - (3 + i))(x - (3 - i)) = (x - 3 - i)(x - 3 + i) 34 Ontbind in factoren. 1 x 2 + 2x + 10 x2 + 2x + 10 = 0 x1 = –1 + 3i x2 = –1 – 3i ........................................................................................................................................................................................ = 1(x – (–1 + 3i)) (x – (–1 – 3i)) ................................................................................................................................................................................................................................. = (x + 1 – 3i) (x + 1 + 3i) ................................................................................................................................................................................................................................. 2 2x 2 - 2x + 1 2x2 – 2x + 1 = 0 x1 = 0,5 + 0,5i x2 = 0,5 – 0,5i ........................................................................................................................................................................................ = 2(x – (0,5 + 0,5i)) (x – (0,5 – 0,5i)) ................................................................................................................................................................................................................................. = 2(x – 0,5 – 0,5i) (x – 0,5 + 0,5i) ................................................................................................................................................................................................................................. 3 x2 + 4 ........................................................................................................................................................................................ = x2 – 4i2 4 = (–4)(–1) = –4i2 = (x + 2i) (x - 2i) verschil van twee kwadraten ................................................................................................................................................................................................................................. ................................................................................................................................................................................................................................. 4 -2x 2 + 16x - 32 ........................................................................................................................................................................................ = –2(x2 – 8x + 16) gemeenschappelijke factor afzonderen = –2(x – 4)2 volkomen kwadraat ................................................................................................................................................................................................................................. ................................................................................................................................................................................................................................. 35 Paragraaf 1 Complexe getallen Uitdagingen 1 Op de planeet Quaternion rekent men met onze reële getallen en de gewone vermenigvuldiging, maar ook nog met drie symbolen i, j en k die op de volgende manier worden vermenigvuldigd: i ? i = -1 j ? j = -1 k ? k = -1 i?j=k j?k=i k?i=j Als je bovendien weet dat de vermenigvuldiging op Quaternion associatief maar niet commutatief is, wat is dan k ? j ? i ? (A) 1 (B) -1 (C) i (D) j (E) k Vlaamse Wiskunde Olympiade zie pagina 76 2 Gegeven is de voorstelling van een complex getal c in het complexe vlak. Bepaal via meetkundige weg de voorstelling van: 1 c + i 3 c + 2 - i 22c 4 -c + 2i zie pagina 76 3 Bewijs de eigenschappen voor toegevoegde complexe getallen. 1 c1 + c2 = c1 + c2 2 c1 ? c2 = c1 ? c2 Aanwijzing: stel c1 = a1 + b1i en c2 = a2 + b2i met a1, b1, a2, b2 Œ R zie pagina 77 4 Toon aan: ( a + bi )−1 = a b - 2 i 2 a +b a + b2 2 zie pagina 77 5 Als i 2 = -1, dan is (i - i -1)-1 gelijk aan (A) 0 (B) -2i (C) 2i (D) - i 2 Vlaamse Wiskunde Olympiade (E) i 2 zie pagina 77 3 3 6 Bereken: (1 + i ) - (1 - i ) (1 - i )3 (1 + i )3 zie pagina 78 7 Los de hogeregraadsvergelijking op in C. 1(2x - 3)(x 2 + 1) = 0 3 x 3 + 2x 2 + 3x - 6 = 0 2 x 3 - 8 = 0 4 x 4 - x 2 - 20 = 0 zie pagina 78 36